Probabilistic Latent-Factor Database Models

نویسندگان

  • Denis Krompass
  • Xueyan Jiang
  • Maximilian Nickel
  • Volker Tresp
چکیده

We describe a general framework for modelling probabilistic databases using factorization approaches. The framework includes tensor-based approaches which have been very successful in modelling triple-oriented databases and also includes recently developed neural network models. We consider the case that the target variable models the existence of a tuple, a continuous quantity associated with a tuple, multiclass variables or count variables. We discuss appropriate cost functions with different parameterizations and optimization approaches. We argue that, in general, some combination of models leads to best predictive results. We present experimental results on the modelling of existential variables and count variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل معادلات ساختاری و کاربرد آن در مطالعات روانشناسی: یک مطالعه مروری

Introduction: Structural Equation Modeling (SEM) is a very general statistical modeling technique, which is widely used in the behavioral sciences. It can be viewed as a combination of path analysis, regression and factor analysis.  One of the prominent features of this method is the ability to compute direct, indirect and total effects, as well as latent variable modeling. Methods: This sy...

متن کامل

Constructing Visual Models with a Latent Space Approach

We propose the use of latent space models applied to local invariant features for object classification. We investigate whether using latent space models enables to learn patterns of visual co-occurrence and if the learned visual models improve performance when less labeled data are available. We present and discuss results that support these hypotheses. Probabilistic Latent Semantic Analysis (...

متن کامل

Convolutional Factor Graphs as Probabilistic Models

Based on a recent development in the area of error control coding, we introduce the notion of convolutional factor graphs (CFGs) as a new class of probabilistic graphical models. In this context, the conventional factor graphs are referred to as multiplicative factor graphs (MFGs). This paper shows that CFGs are natural models for probability functions when summation of independent latent rando...

متن کامل

Unsupervised Sense Disambiguation Using Bilingual Probabilistic Models

We describe two probabilistic models for unsupervised word-sense disambiguation using parallel corpora. The first model, which we call the Sense model, builds on the work of Diab and Resnik (2002) that uses both parallel text and a sense inventory for the target language, and recasts their approach in a probabilistic framework. The second model, which we call the Concept model, is a hierarchica...

متن کامل

Probabilistic Latent Semantic Indexing Proceedings of the Twenty-Second Annual International SIGIR Conference on Research and Development in Information Retrieval

Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized model is able to deal with domain{speci c synonymy as well as with polysemous words. In contrast ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014